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Abstract 

Risk management and prediction of market losses of cryptocurrencies are of notable value to risk 

managers, portfolio managers, financial market researchers and academics. One of the most common 

measures of an asset’s risk is Value-at-Risk (VaR). This paper evaluates and compares the 

performance of generalized autoregressive score (GAS) combined with heavy-tailed distributions, in 

estimating the VaR of two well-known cryptocurrencies’ returns, namely Bitcoin returns and Ethereum 

returns. In this paper, we proposed a VaR model for Bitcoin and Ethereum returns, namely the GAS 

model combined with the generalized lambda distribution (GLD), referred to as the GAS-GLD model. 

The relative performance of the GAS-GLD models was compared to the models proposed by Troster et 

al. (2018), in other words, GAS models combined with asymmetric Laplace distribution (ALD), the 

asymmetric Student’s t-distribution (AST) and the skew Student’s t-distribution (SSTD). The Kupiec 

likelihood ratio test was used to assess the adequacy of the proposed models. The principal findings 

suggest that the GAS models with heavy-tailed innovation distributions are, in fact, appropriate for 

modelling cryptocurrency returns, with the GAS-GLD being the most adequate for the Bitcoin returns at 

various VaR levels, and both GAS-SSTD, GAS-ALD and GAS-GLD models being the most appropriate 

for the Ethereum returns at the VaR levels used in this study. 
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Introduction 

There has been remarkable development in the cryptocurrency sphere over the past ten years. Bitcoin, one 
of the most widely traded cryptocurrencies, was first introduced and documented by Satoshi Nakamoto in 
2008. Cryptocurrencies were established to promote the use of decentralized control so that electronic 
payments between individuals can be made without transacting via a third party (Ardia et al., 2018). This 
reduces transaction costs to an almost zero cost and/or price and allows for speedy buying and selling. 
Cryptocurrencies have always received a considerable amount of attention from academics and the finance 
industry since Bitcoin’s inception. However, over the past few years the global interest in cryptocurrencies 
has grown exponentially, specifically from investors, central banks and governments. The enormous jump in 
value of cryptocurrencies such as Bitcoin and Ethereum from February 2017 to December 2017 has created 
an attraction to the analysis of this new market (Catania and Grassi, 2017). There is no central bank 
supervising the issuing of it and they have no exposure to common stock markets, hence factors like interest 
rates and inflation do not affect it. Volatility is highly prominent in cryptocurrencies and has been found to 
exhibit very similar behaviour to that of other financial time series such as foreign exchange returns (Liu et 
al., 2017). 
 
Assessing the volatility of cryptocurrencies is vital, as they have found a place in financial markets as well as 
portfolio management (Dyhrberg, 2015). Bitcoin was initially perceived as a currency, as it was invented to 
be a medium of exchange; however, investors now use it as an investment tool. Many risks are affiliated with 
cryptocurrencies due to its unpredictable nature and because of the lack of adequate experience, regulators 
have not yet found the tools to regulate the market (Liu et al., 2017). It is essential to have an approximation 
of risk when trading financial assets. A basic tool that is employed to measure cryptocurrency risk is Value-
at-Risk (VaR) which is defined as a measure of the maximum loss an investment can incur in a specific 
period at a specified level of confidence (Jorion, 2000). Since cryptocurrencies were only introduced in 2008, 
limited research and analysis of the statistical features of cryptocurrencies have been done. However, the 
studies that have been done since its inception allow one to have a better understanding of how these 
financial assets tend to behave. 

 
Literature Review  
 
Chan et al. (2017) evaluated various statistical distributions to model seven of the highest ranked 
cryptocurrencies adequately, but Ethereum was omitted. Daily data from 23 June 2014 to 28 February 2018 
were used for the analysis. Value-at-risk (VaR) and expected shortfall measures of risk were used to evaluate 
the best fits. The distributions considered in the study were fitted to the returns of the cryptocurrencies. All 
the cryptocurrencies’ returns were found to exhibit heavy tails, and the generalized hyperbolic distribution 
was found to outperform the other distributions, including the Laplace and Gaussian distributions. The 
volatility of Bitcoin was investigated by Sapuric and Kokkinaki (2014) by comparing it to the volatility of the 
exchange rates of major global currencies. The analysis was done using data from July 2010 to April 2014 
and it was discovered that Bitcoin has high annualized volatility, but when transaction volume was taken into 
account, it proved to be more stable.  
 
Ardia et al. (2018) used Markov-switching GARCH (MSGARCH) models to explore the existence of regime 
changes in the GARCH volatility dynamics of Bitcoin log returns. Daily Bitcoin mid-prices from August 2011 
to March 2018 were used in the investigation. Since the MSGARCH models cater for structural breaks, it was 
shown that the Bitcoin returns do in fact exhibit regime changes in their volatility dynamics and by using the 
one-day-ahead VaR forecasts, the MSGARCH model was found to be the best fit when compared to the 
standard single-regime GARCH models. Katsiampa (2017) investigated the capabilities of GARCH models 
to capture the volatility of Bitcoin by using data from July 2010 to October 2016. Various GARCH-type models 
were tested, of which the autoregressive component GARCH (AR-CGARCH) model proved to be the model 
with the most optimal fit, based on goodness-of-fit measures. This result depicted how important it is to 
consider a short-run and long-run component of conditional variance. 
 
Chu et al. (2017) modelled the daily data of seven of the most popular cryptocurrencies from June 2014 to 
May 2017 by using twelve GARCH models. Based on five different goodness-of-fit criteria which included 
the ability of the models to estimate VaR, the IGARCH and GJR-GARCH models obtained the best fits for 
modelling the volatility exhibited by the most popular cryptocurrencies. Bouoiyour et al. (2016) showed how 
volatility had decreased when daily Bitcoin data from the period 2010-2015 were compared with data from 
the beginning of 2015 by using an optimal GARCH model. This indicates that asymmetry in the Bitcoin market 
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was prominent and that Bitcoin prices are thus more influenced by negative impacts than by positive ones. 
Liu et al. (2017) modelled Bitcoin data for a seven-year period, from 2010 to 2017, comparing the traditional 
Student’s-t-distribution with a newly developed heavy-tailed distribution, the normal reciprocal inverse 
Gaussian under the GARCH framework. Based on the Akaike information criterion (AIC) and Bayesian 
information criterion, the Student’s-t-distribution produced the best in-sample results.  
 
Takaishi (2018) explored the statistical properties and multifractality of Bitcoin. 1-minute Bitcoin price index 
from January 2014 to January 2017 was utilized in the study and it was found that Bitcoin returns exhibit 
behaviour that is similar to that of the stylized facts of asset returns such as heavy-tailed return distribution, 
short-ranged serial correlations in returns and volatility clustering. It was also found that skewness tends to 
be negative at time scales that are shorter than one day and is zero at time scales that are longer than one 
week. The volatility asymmetry was explored by using GARCH, GJR and RGARCH models and no evidence 
of such was found. The Bitcoin series exhibited multifractality, which was investigated by using multifractal 
detrended fluctuation analysis. 
 
Conrad et al. (2018) assessed the forecast performance of multiplicative volatility models by modelling the 
daily log returns on the S&P 500 for the 1971 to 2017 period. The forecasting abilities of the multiplicative 
GARCH models were compared for many forecast horizons and, based on the QLIKE loss, it was found that 
the multiplicative GARCH models incorporating financial and macro-economic variables improve on the 
heteroscedastic autoregressive (HAR) model. Equities of the NASDAQ-100 financial index series from 
January 2000 to December 2011 were modelled by Chalabi et al. (2012) by introducing new 
parameterizations of the GLD where the median and interquartile range were found to be interchangeable 
with the location and shape parameters of the distribution. This GLD proved to be advantageous in modelling 
financial returns as the GLD family has the ability to accommodate a great range of distribution shapes. The 
robustness of the GLD thus allows for a single distribution to be used to model the data from various asset 
classes. Corrado (2001) modelled non log-normal security price distributions by using the GLD. It was found 
that the flexibility of the GLD and its several other advantages make this distribution ideal to employ for 
numerous financial applications, for example approximation of option-implied state price densities and risk 
analyses based on Monte Carlo simulations. 
 
Troster et al. (2018) modelled and forecasted the risks and returns of Bitcoin for the period July 2010 to April 
2018 by using heavy-tailed GARCH models and the generalized autoregressive score (GAS) models with 
underlying distributions that include the normal, Student’s-t and the asymmetric Student’s-t (AST) with two 
decay parameters. The AIC and BIC criteria were used to assess the goodness-of-fit of the models and three 
backtesting procedures of 1%-VaR forecasts were performed to evaluate the VaR model specifications. The 
GAS models with heavy-tailed underlying distributions always outperformed the normally distributed GARCH 
and GAS models. The GAS-AST produced the best conditional and unconditional coverage for the 1% 
forecasts. Table 1 summarises some previous studies on modelling and analysing risk in cryptocurrencies. 
Thus, in this study we extend the work of Troster et al. (2018) by combining the GAS model with the GLD 
and by assessing the robustness of the proposed model at different VaR levels.  
 
To the best of our knowledge, there are limited studies using GAS models with heavy tailed distributions, for 
example generalized lambda distributions (GLD), the asymmetric Laplace distributions (ALD), asymmetric 
Student’s-t distribution (AST) with two-tail decay and the skew Student’s-t distribution (SSTD) to model 
cryptocurrency data. The results acquired here are compared with those of Troster et al. (2018). 
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Table 1: Summary of related research on modelling and analysing risk in cryptocurrencies 

Authors Data Models Robust models 
Troster et al. 
(2018) 

 GARCH, APARCH  
 GJRGARCH, TGARCH  
Bitcoin CGARCH, NGARCH  
(Daily data for the period HGARCH, EGARCH GAS-AST 
19 July 2010-16 April 2018) GAS-N, GAS-tS  
 GAS-SSTD, GAS-AST  
 GAS-AST1  

Chan et al. (2017) Bitcoin Student’s-t  
Dash Laplace  
Litecoin Skew t  
MaidSafeCoin Generalized hyperbolic  
Monero Normal inverse 

Gaussian 
Generalized 
Hyperbolic 

Dogecoin Generalized-t  
Ripple Skew Student’s-t  
(Daily data for the period Asymmetric Student’s-t  
23 June 2014-28 February 2017) Generalized t  

Katsiampa (2017)  GARCH  

Bitcoin EGARCH  
TGARCH  

(Daily data for the period AR-CGARCH 
APARCH 

18 June 2010-1 October 2016)  
CGARCH  

  
 ACGARCH  

Chu et al. (2017) Bitcoin   
Dash SGARCH, EGARCH,  
LiteCoin  

APARCH, IGARCH,  
MaidSafeCoin  

TGARCH, AVGARCH, GJR-GARCH 
Monero 

NAGARCH, 
ALLGARCH, 

IGARCH 
Dogecoin 

GJR-GARCH, GARCH,  
Ripple  

NGARCH, CSGARCH  
(Daily data for the period  

  
23 June 2014-28 February 2017)   

Liu et al. (2017) Bitcoin GARCH  
(Daily data for the period GARCH-NRIG GARCH-NRIG 
19 July 2010-23 July 2017) GARCH-SSTD  

Takaishi (2017) Bitcoin GARCH  
(1-min price index for the period GJR-GARCH GJR-GARCH 
1 January 2014-31 December 
2016) 

RGARCH  

Ardia et al. (2018) Bitcoin MSGARCH  
(Daily data for the period GJR-MSGARCH 

GJR-MSGARCH 
18 August 2011-3 March 2018)  

  

 
 
 



   Subramoney et al. / International Journal of Finance & Banking Studies, Vol 10 No 4, 2021 

  ISSN: 2147-4486 

Peer-reviewed Academic Journal published by SSBFNET with respect to copyright holders. 

 
 

P
ag

e4
4

 
P

ag
e4

4
 

Research and Methodology 
 
This section introduces the theoretical frameworks and properties of the models used in the study. 
 
GAS models 
 
Generalized autoregressive score (GAS) models, proposed by Creal et al. (2013), are a set of observation-
driven time series models. The GAS approach is distinguished from other observation-driven approaches in 
that the models’ driving mechanism is the scaled score of the likelihood function. The GAS specification 
provides a framework for introducing time-varying parameters in a range of nonlinear models. It 
encompasses popular observation-driven models such as the GARCH models, autoregressive conditional 
density models (ACD) introduced by Engle and Russell (1998), autoregressive conditional multinomial 
models (ACM) of Rydberg and Shephard (2003), and Poisson models for count data. 
 
We define 𝑌𝑡 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑡}, 𝐹

𝑡 = {𝑓0, 𝑓1, ⋯ , 𝑓𝑡} and 𝑋𝑡 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑡} where 𝑋𝑡 is a vector of independent 
variables.  
 
Let 𝑌𝑡 be an 𝑁 × 1 random vector at time 𝑡 with conditional distribution:  
 
 𝑦𝑡 ∼ 𝑝(𝑦𝑡|𝑓𝑡, 𝐹𝑡; 𝜃),          (1) 
 
where 𝐹𝑡 = {𝑌

𝑡−1, 𝐹𝑡−1, 𝑋𝑡} for 𝑡 = 1,2,⋯ , 𝑛 and 𝜃 is a vector of static parameters.  
 
The time-varying parameter 𝑓𝑡 is assumed to be updated by the following autoregressive equation: 
 

 𝑓𝑡+1 = 𝜔 + ∑
𝑝
𝑖=1 𝐴𝑖𝑠𝑡−𝑖+1 +∑

𝑞
𝑗=1 𝛽𝑗𝑓𝑡−𝑗+1,       (2) 

 
where 𝜔 is a vector of constants. 𝐴𝑖 and 𝐵𝑗 are matrices of coefficients that have suitable dimensions for 𝑖 

and 𝑗 and are functions of 𝜃. Furthermore, 𝑠𝑡 is an appropriate function of past data, i.e. 𝑠𝑡 = 𝑠𝑡(𝑦𝑡 , 𝑓𝑡 , 𝐹𝑡; 𝜃). 
The distinguishing characteristic of a GAS model is the choice of the innovation 𝑠𝑡 as the local score, ∇𝑡. We 
specify the innovation as follows: 
 
 𝑠𝑡 = 𝑆𝑡 ⋅ ∇𝑡           (3) 

 ∇𝑡=
Δln𝑝(𝑦𝑡|𝑓𝑡,𝐹𝑡;𝜃)

Δ𝑓𝑡
          (4) 

 𝑆𝑡 = 𝑆(𝑡, 𝑓𝑡 , 𝐹𝑡; 𝜃)          (5) 
 
where 𝑆(⋅) is a matrix function. 
 
These equations are defined to be the generalized autoregressive score function with orders 𝑝 and 𝑞, i.e. 
GAS (𝑝, 𝑞). Updating the time-varying parameter, 𝑓𝑡, with the use of the score function is known for improving 

the model’s fit in terms of the likelihood at time 𝑡, with the current position of 𝑓𝑡 being realized. The score, ∇𝑡, 
is dependent on the complete density of the observations 𝑦𝑡, which differentiates the GAS model framework 
from many other observation-driven models found in past literature. The structure is highly flexible in a sense 
that different choices for the scaling matrix 𝑆𝑡  can produce many available observation-driven models 

introduced in literature, as 𝑆𝑡 influences how the score is used to update 𝑓𝑡 (Creal et al., 2013).  
 
The MLE process is used to estimate the parameters of the GAS models fitted to both cryptocurrencies data. 
The methods implemented for the GAS models in the statistical software platform R are available within the 
GAS package. 
 
Generalized lambda distribution 
 
The generalized lambda distribution (GLD), initially introduced by Ramberg and Schmeiser (1974), is one of 
the most essential generalized classes of distributions. It is a four-parameter (location, scale, kurtosis, and 
skewness) modification of Tukey’s lambda distribution (Tukey, 1960) that can be manipulated to produce 
common statistical distributions, such as Gaussian, lognormal, uniform and Weibull, as special cases.  
In this study we use the FMKL (Freimer–Mudholkar–Kollia–Lin, 1988) parameterization defined as 
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 𝑄(𝑢) = 𝜆1 +

𝑢𝜆3−1

𝜆3
−
(1−𝑢)𝜆4−1

𝜆4

𝜆2
,         (6) 

 
where 𝜆1  is the location parameter, 𝜆2  is the scale parameter, and, 𝜆3  and 𝜆4  are defined as the shape 
parameters, i.e., 𝜆3 is a skewness parameter and 𝜆4 is a kurtosis parameter. The methods applied for the 
FMKL GLD models in the statistical software platform R are available within the package GLDEX. 
 
Asymmetric Student’s t distribution 
 
The class of generalized Student’s t distribution that was proposed possesses one skewness parameter and 
two tail parameters as a skewness parameter principally controls the asymmetry of the central part of a 
distribution. This class of the Student’s t distribution is known as the asymmetric Student’s t- distribution 
(AST) and provides the potential to enhance the ability to fit and forecast empirical data in the tail regions 
which is essential to risk management and other financial econometric applications. Its probability density 
function is described by, 
 

 𝑓(𝑦; 𝛼, 𝜈1, 𝜈2) =

{
 
 

 
 𝛼

𝛼∗
𝐾(𝜈1) [1 +

1

𝜈1
(
𝑦

2𝛼∗
)
2

]
−
𝜈1+1

2
                , 𝑦 ≤ 0

1−𝛼

1−𝛼∗
𝐾(𝜈2) [1 +

1

𝜈1
(

𝑦

2(1−𝛼∗)
)
2

]
−
𝜈2+1

2
    , 𝑦 > 0,

     (7) 

 
where 𝛼 is the skewness parameter and 𝛼 ∈ (0,1). 𝜈1 > 0 is the left-tail parameter and 𝜈2 > 0 is the right-tail 
parameter. 𝐾(𝜈) and 𝛼∗ are defined as, 
 

 𝐾(𝜈) ≡ Γ((𝜈 + 1)/2)/[√𝜋𝜈Γ(𝜈/2)],        (8) 

 𝛼∗ = 𝛼𝐾(𝜈1)/[𝛼𝐾(𝜈1) + (1 − 𝛼)𝐾(𝜈2)].        (9) 
 
The density described in (7) is continuous and unimodal. Scale adjustments are made through 𝛼∗ for the left 
and right parts of the density to guarantee continuity under changes of the shape parameters. 
 
Asymmetric Laplace distribution 
 
One of the most common symmetric distributions used for modelling data that exhibits leptokurtic behaviour 
is the classical Laplace distribution. However, this distribution is not appropriate for modelling data with an 
asymmetric empirical distribution and thus a class of distributions known as the asymmetric Laplace 
distributions was proposed. The asymmetric Laplace distribution (ALD), introduced by Kotz et al. (2001), 
portrays flexibility with regard to heavy tails and skewness found in a data set and thus makes it 
advantageous to model financial data. The ALD is given by, 
 

𝑓(𝑦) =
𝜅√2

𝜏(1+𝜅2)
{
exp (−

𝜅√2

𝜏
|𝑦 − 𝜃|)    , 𝑖𝑓    𝑦 ≥ 𝜃

exp (−
√2

𝜅𝜏
|𝑦 − 𝜃|)    , 𝑖𝑓    𝑦 < 𝜃,

                  (10) 

  
where 𝜃 is the location parameter, 𝜏 > 0 is the scale parameter and 𝜅 > 0 is the skewness parameter. 
 
Combining the GAS model with the GLD 
 
The step-by-step method used to produce the GAS-GLD model is as follows: 
 

• The first step is to fit a Gaussian GAS model to the Bitcoin and Ethereum returns data. 

• The next step is to extract the standardized residuals from the fitted Gaussian GAS models. The 
generalized lambda distribution is then fitted to the extracted sets of standardized residuals. 

• The last step is to use the Anderson-Darling test to assess the goodness-of-fit of the model. 
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Value-at-Risk (VaR) and backtesting 
 
Value-at-Risk (VaR) is the most commonly used risk metric in market risk management. It is a summary of 
the statistical measures of potential losses and is expressed as a confidence interval in units of a specific 

currency over a specific time period (Duffie and Pan, 1997). If 𝑂̂(⋅) represents the cumulative distribution 
function (CDF) of the best fitting distribution then VaR can be defined as, 
 

 VaR (𝑝) = 𝑂̂−1(𝑝),         (11) 
 
for 0 < p < 1. 
 
Generally, to backtest the adequacy of a model, the recursive approach of forecasting is employed 
(Marcellino, 2006). This method is also used to compare models in terms of VaR predictions. The aim of 
backtesting analysis is to assess the precision of the prediction by splitting the estimation and evaluation 
period. VaR backtesting procedures evaluate the true coverage of the unconditional and conditional left-tail 
of a log returns distribution (Ardia, Boudt and Catania, 2018). The correct unconditional coverage (UC) was 
first considered by Kupiec (1995) and the correct conditional coverage (CC) was first considered by 
Christoffersen (1998). In this study, we utilize the Kupiec likelihood ratio test for backtesting. 
 
 

Empirical Results and Discussions 
 
This section comprises the results that were produced by applying the models (described in previous section) 
to the Bitcoin and Ethereum datasets. 
 
Data source and description 
 
The data used in this analysis consist of the daily Bitcoin and Ethereum closing prices in United States dollars 
(USD). Different time periods were chosen for the two sets of cryptocurrencies due to data availability 
constraints. There are 2049 daily observations for the Bitcoin closing prices for the period 06/10/2013 to 
28/05/2019 and 1355 daily observations for the Ethereum closing prices for the period 07/08/2015 to 
22/04/2019.  
 
The sets of data were obtained from: https://www.cryptodatadownload.com/data/northamerican/.In order to 
understand the properties of the data used, exploratory data analysis was utilized. 
 
 

 
(a)                                       (b) 

Figure 1: Time series plots of (a) daily Bitcoin prices (USD) for the period 6 October 2013 to 28 May 2019 
and (b) daily Ethereum prices (USD) for the period 7 August 2015 to 22 April 2019. 
 
Figure 1 depicts the general trend that was observed by the daily Bitcoin and Ethereum prices for the 
specified period. It appeared that the prices fluctuated at relatively low amounts for Bitcoin from 2014 to early 
2017 and for Ethereum from 2015 to early 2017. Thereafter, the close prices for both cryptocurrencies began 
to display a particular momentum and trend upwards until it peaked in 2018, after which exhibited an 
unsteady downward movement. Such behaviour suggests a series of non-stationarity due to the observed 
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trends, which implies non-constant means and high variability. Investors are interested in returns on their 
investments and therefore, the closing prices data were then transformed to produce log-returns, 

𝑟𝑡 = ln
𝑝𝑡
𝑝𝑡−1

 

 
where 𝑟𝑡 is the log return, 𝑝𝑡 is the closing price of the cryptocurrency at time 𝑡, and 𝑝𝑡−1 is the closing price 
of the cryptocurrency at time 𝑡 − 1 . Figure 2 shows the time series plots of the log returns for both 
cryptocurrencies. 
 

 
                              (a)                                                         (b) 
Figure 2: Time series plots of (a) daily Bitcoin log returns for the period 6 October 2013 to 28 May 2019 and 
(b) daily Ethereum log returns for the period 7 August 2015 to 22 April 2019. 
 
The time series plots of the returns in Figure 2 display a fluctuating pattern around zero for both the Bitcoin 
and Ethereum data. This implies that the return series are now stationary in mean for the two 
cryptocurrencies. However, the observed trend of high and low periods suggests time-varying variance, 
which indicates the presence of volatility clustering. Leverage effects also appear to be prominent, as 
negative shocks to returns increase volatility with a larger impact than that of positive shocks. 

 
 

Table 2: Descriptive statistics of the log returns of the daily Bitcoin and Ethereum prices 
 

Statistics Bitcoin Ethereum 
 
 

Minimum -0.2915 -1.3740 
 

Maximum 0.2988 0.4035 
 

Mean 0.0021 0.0030 
 

STDEV 0.0445 0.0760 
 

Skewness -0.0331 -4.0598 
 

Kurtosis 7.0819 80.8327 
 

Table 2 shows the descriptive statistics of the log returns of the daily Bitcoin and Ethereum prices. The mean 
of the Bitcoin and Ethereum returns was found to be positive. This indicates that both sets of returns were 
somewhat increasing. Both cryptocurrencies appear to be negatively skewed, which implies that the left tail 
is larger than that of the right and, as reported, Ethereum is more negatively skewed than Bitcoin. This 
suggests that the losses of the returns are greater than the profits for both cryptocurrencies, with Ethereum 
having larger losses. Bitcoin’s, as well as Ethereum’s, excess kurtosis is positive indicating that the daily 
returns are heavy-tailed. 
 
Figures 3 and 4 show the density and Q-Q plots of the log returns, respectively. The density and Q-Q plots 
of the cryptocurrencies show significant deviations from the normal plot and normal line, respectively. It can 
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be seen that the tails of both the Bitcoin and Ethereum log returns are heavier than those of the normal ones. 
The density plots are also observed to be substantially different from the normal distribution. 
 

 
(a)                                                          (b) 

Figure 3: Density plots of the daily (a) Bitcoin and (b) Ethereum log returns 
 

 
(a)                                                             (b) 

Figure 4: QQ plots of the daily (a) Bitcoin and (b) Ethereum log returns 
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Table 3: Formal tests of the log returns of daily Bitcoin prices (BTC/USD) and Ethereum prices (ETH/USD) 

 

 
 
The daily Bitcoin and Ethereum returns were found to be stationary as the resultant 𝑝-values of the ADF and 
PP tests of stationarity for all three cases, as given in Table 3, are less than 0.05, indicating that the null 
hypothesis of non-stationarity is rejected at a 5% level of significance. The KPSS test supports the two other 
tests of stationarity with test statistics that result in 𝑝-values greater than 0.05 and thus failing to reject the 
null hypothesis of stationarity. Tests for normality showed that the returns for both the cryptocurrencies are 
not normally distributed, as the 𝑝-values of the Jarque-Bera and Shapiro-Wilk test are less than 0.05, which 
suggests a rejection of the hypothesis of normality. This supports the deviations found in the plots in Figures 
3 and 4. Time-variation was also investigated in both returns’ data. As seen in Table 3, the 𝑝-values of the 
Cox-Stuart tests for Bitcoin and Ethereum are both greater than 0.05, implying that the null hypothesis of a 
non-monotonic trend is not rejected at a 5% level of significance. Thus, both sets of cryptocurrencies are 
independent and identically distributed. As mentioned above, the two cryptocurrencies’ return series were 

  Bitcoin Ethereum 

Test  Test Statistic    p-value   Test Statistic   p-value 

 ADF test     

 Case 1: No drift, no trend -13.5000 0.0100 -12.4000 0.0100 

 Case 2: Drift, no trend -13.6000 0.0100 -12.5000 0.0100 

 Case 3: Drift and trend -13.6000 0.0100 -12.6000 0.0100 

 PP test     
 Case 1: No drift, no trend -2336.0000 0.0100 -1251.0000 0.0100 

Stationarity Case 2: Drift, no trend -2326.0000 0.0100 -1246.0000 0.0100 

 Case 3: Drift and trend -2325.0000 0.0100 -1242.0000 0.0100 

 KPSS test     
 Case 1: No drift, no trend 1.5100 0.0660 1.5800 0.0587 

 Case 2: Drift, no trend 0.1300 0.1000 0.3000 0.1000 

 Case 3: Drift and trend 0.1300 0.0720 0.1700 0.0340 

      

Normality Jarque-Bera test 4292.0000 < 0.0001 373480.0000 < 0.0001 

Shapiro-Wilk 0.8952 < 0.0001 0.7750 < 0.0001 

  
      

Time variation Cox-Stuart test 498.0000 0.3988 313.0000 0.0546 

      

Leverage 
effects 

Sign and size test 6.4384 0.0921 11.9897 0.0074 

      

Autocorrelation Ljung-Box test 7.7905 0.0506 3.2293 0.0723 

      

ARCH effects Box-Ljung test 7.6956 0.0055 9.9378 0.0191 

ARCH-LM test 169.1400 < 0.0001 580.2600 < 0.0001 

  
      

Structural 
change 

Chow test 3.069 0.0467 4.736 0.0089 
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found to be uncorrelated. However, strong ARCH effects are demonstrated by the data, as indicated by the 
Ljung-Box test performed on the squared returns and the ARCH-LM test. 
 
A symmetric GARCH(1,1) model was fitted to the cryptocurrencies’ data. The sign and size bias test was 
then applied and the joint effect test statistic 𝑝-values that were obtained were less than 0.10 for both Bitcoin 
and Ethereum. This implies that the null hypothesis of no asymmetric effects present should be rejected at a 
10% level of significance. Hence, the GARCH(1,1) model failed to capture the asymmetry and thus there 
appears to be both a sign and size effect on future volatility of the returns. This implies that an asymmetric 
model will be required to capture the asymmetric effects exhibited. Bai-Perron breakpoint test (1998), it was 
found that there was a significant deviation in the Bitcoin return series around 23 August 2015. The data 
were then split into two parts, from which two regressions resulted. The Chow test for structural change was 
applied to this data and the resulting 𝑝-value was less than 0.05, indicating that the null hypothesis of no 
structural break is rejected. This implies that the series did, in fact, move away from the trend after the 
indicated time. Structural change for the Ethereum returns data around 29 January 2018 was detected. The 
exact approach applied to the Bitcoin returns was then utilized for this data. The 𝑝-value = 0.0089 suggests 
that the null hypothesis is to be rejected implying that the structural break identified is significant. The results 
of the exploratory data analysis are now summarized. From the exploratory data analysis, it can be concluded 
that the daily Bitcoin and Ethereum returns exhibited the following empirical properties: volatility clustering 
and non-linear dependence, heavy-tails, significant serial correlations in the absolute and squared returns, 
time variation, leverage effects, ARCH effects and structural change.  
 
Fitting GAS models with heavy-tailed distributions 
 
The first step to perform a GAS analysis is to specify an appropriate model. The conditional distributions that 
were of focus here for both sets of cryptocurrency data, were the skewed Student’s-t, the asymmetric Laplace 
and the asymmetric Student’s-t (with two-tailed decay parameter) distributions. A GAS model with a GLD 
conditional distribution was also considered. All specifications utilized one of the three scaling mechanisms 
to acquire adequate fits (Ardia, Boudt and Catania, 2019). A GAS (1, 1) model with the above listed 
distributions exhibited a time variation in one or more of the parameters for location, scale, skewness and 
shape (1 and/or 2) of the distribution. All parameters of the three models fitted to both sets of data were found 
to be statistically significant at a 5% level of significance. Thus, all models appear to have been adequate 
fits.  
 
Table 4: Estimation of results of the Gaussian GAS (1,1) model for the Bitcoin and Ethereum daily returns 

   Parameter
s  

 Estimate   Std   p-value 

 𝜔̂𝜇   0.0014   0.0008   0.0323 

Bitcoin 𝜔̂𝜙   -0.3310   0.0202   < 0.0001 

 𝑎̂𝜙   0.1898   0.0166   < 0.0001 

 𝑏̂𝜙   0.9469   0.0032   < 0.0001 
 

  𝜔̂𝜇   6.046 × 10−5   4.151 × 10−5   0.0727  

 𝜔̂𝜙   −1.031 ×
10−1  

 7.610 × 10−4   < 0.0001 

Ethereum 𝑎̂𝜇   1.000 × 10−4   1.053 × 10−13   < 0.0001 

 𝑎̂𝜙   1.000 × 10−4   1.053 × 10−4   < 0.0001 

 𝑏̂𝜇   9.800 × 10−1   4.854 × 10−11   < 0.0001 

 
A Gaussian GAS (1,1) model was fitted to both sets of data and the estimates are found in Table 4. The 
model appears to have been a good fit at a 10% level of significance. The residuals of these modelsWere 
then extracted and analysed. 
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Table 5: Descriptive statistics of the residuals extracted from the Gaussian GAS model fitted to the log returns 
of the daily Bitcoin (BTC/USD) and Ethereum (ETH/USD) prices 

Statistics Bitcoin Ethereum 
 

Minimum -5.8473 -18.1154 
Maximum 5.9044 5.2697 

Mean 0.0080 0.00002 
STDEV 0.9510 1.0000 

Skewness -0.2670 -4.0600 
Kurtosis 4.8550 80.8443 

 
The descriptive statistics of the residuals were obtained and is reported in Table 5. It appears that the mean 
of the residuals of both the cryptocurrencies are not significantly different from zero. The excess kurtosis of 
4.8550 and 80.8443 for the Bitcoin and Ethereum residuals, respectively, suggest that heavy tails are, in fact, 
prominent. The results of the Jarque-Bera (p-value <0.0001) and Shapiro-Wilk tests (p-value <0.0001) of 
normality imply that the residuals’ tails are heavier than that of the normal distribution. Fitting a GLD to the 
extracted residuals was then justified as the GLD accommodated for the leptokurtic behaviour exhibited. A 
GLD model was fitted to the Gaussian GAS residuals with FMKL parameterizations by using the MLE 
method. The estimates of the model are found in Table 6. The Anderson-Darling test results, as recorded in 
Table 6 implies that the GLD models were good fits at a 5% level of significance. 
 
Table 6: GLD models fitted to the extracted Bitcoin and Ethereum residuals from the Gaussian GAS model. 

Estimates   Bitcoin   Ethereum 

𝜆̂1   0.0192   -0.0547  

𝜆̂2   3.3740   4.0269 

𝜆̂3   -0.3109   -0.2969 

𝜆̂4   -0.2883   -0.4175 

 
Table 7: Anderson-Darling tests of the GLD fitted to the residuals extracted from the Gaussian GAS model 

 Test Statistc p-value 

Bitcoin 1.4154 0.1980 
Ethereum 1.2821 0.2383 

 
Estimating risk measures is essential in finance as this information is required by traders to examine the 
uncertainty associated with the future values of their portfolios and to take into account any potential losses. 
VaR is one of the standard risk measures and it was estimated at long and short positions. Traders at a short 
position (traders who are selling) will generally incur a loss when price increases, whereas and traders at a 
long position (traders who are buying) will incur a loss when the price drops. Table 8 reports the VaR 
estimates for both short and long positions, which are affiliated with the right and left quantiles of the returns’ 
distribution, respectively. The 1%, 2.5%, 5%, 95%, 97.5% and 99% risk levels were taken into account. 
 
Table 8: VaR estimates for the returns at long and short positions 

 

Distribution 

Long position  Short position  

         

  1% 2.5% 5% 95% 97.5% 99%  

         

 GAS-SSTD -0.1089 -0.0862 -0.0691 0.0736 0.0907 0.1134  
 GAS-AST -0.0417 -0.0342 -0.0278 0.0358 0.0421 0.0496  

Bitcoin GAS-ALD -0.1215 -0.0927 -0.0709 0.0740 0.0958 0.1246  
 GAS-GLD -3.0153 -2.0215 -1.4318 1.4141 1.9612 2.8660  

 
 

GAS-SSTD -0.1858 -0.1463 -0.1169 0.1203 0.1496 0.1891 
GAS-AST -0.1442 -0.1096 -0.0861 0.1100 0.1325 0.1594 

Ethereum GAS-ALD    -0.2107   -0.1615   -0.1242   0.1231   0.1603   0.2095 
GAS-GLD    -2.4987   -1.7129   -1.2411   1.4153   2.1191   3.4162 

a Bold values are the lowest VaR estimates. 
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It was found that for the Bitcoin returns, the GAS-GLD produced the smallest VaR estimates for the long 
positions and the highest VaR estimates for the short positions. The GAS-AST distribution has the largest 
VaR estimates for the long positions and the smallest VaR estimates for the short positions. For the Ethereum 
returns, similarly to the Bitcoin returns, the GAS-AST distribution has the highest VaR estimates for the long 
positions and the smallest VaR estimates for the short positions. The GAS-GLD produced the largest VaR 
estimates for the other two short positions of 97.5% and 99%, respectively. 
 
In-sample backtesting 
 
In-sample backtesting was performed by using the Kupiec likelihood ratio test (1995) to assess the model 
adequacy in estimating the VaR estimates. The p-values of the Kupiec likelihood ratio test at the different 
risk levels for the in-sample data are found in Table 10. The most robust models were chosen, based on the 
highest p-values at a specific level. The p-values less than 0.05 indicate that the null hypothesis of model 
adequacy was rejected at the levels considered. For Bitcoin, it is observed that the GAS-AST model rejected 
the null hypothesis at all specified levels. The GAS-ALD model had the highest p-value at the 1% long 
position. The GAS-GLD outperformed the rest of the models at the 2.5% level. The GAS-SSTD performed 
the best at the 5% level and shared the highest p-value with the GAS-ALD model at the short position of 95% 
level. The GAS-GLD appears to have had the best performance at the 97.5% level and the GAS-ALD at the 
99% level. For the Ethereum returns, the GAS-SSTD and GAS-GLD had the highest p-value at the 1% level 
of the long position. The GAS-GLD model was the most robust model at the other two levels of the long 
position. The GAS-SSTD performed the best at the 95% level. The GAS-ALD had the highest p-value at the 
97.5% and 99% levels. 
 
Table 9: In-sample VaR backtesting for the Bitcoin and Ethereum returns 

  Long position   Short position  

 Distribution         
  1% 2.5% 5% 95% 97.5% 99%  
 GAS-SSTD 0.0181 0.0448 0.5122 0.7289 0.0326 0.0181  

Bitcoin GAS-AST 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 GAS-ALD 0.5831 0.5950 0.3881 0.7289 0.2809 0.5831  
 GAS-GLD 0.4259 0.6944 0.2901 0.0664 0.4541 0.2013  
        

Ethereum GAS-SSTD                    0.6680 0.1065 0.0042 0.8315 0.5890 0.0994  
GAS-AST 0.0025 0.0054 0.1355 0.1693 < 0.0001 < 0.0001  

 GAS-ALD 0.1867 0.0049 0.0001 0.7347 0.7452 0.6680  
 GAS-GLD 0.6680 0.9792 0.5138 0.3097 0.3870 0.0022  

b Bold values are largest p-values. 

 
Out-of-sample backtesting 
 
Out-of-sample backtesting was applied by using the unconditional coverage (UC) test of Kupiec (1995) and 
the results are found in Table 10. The aim of out-of-sample backtesting analysis is to assess the precision of 
the predictive ability of the VaR model by splitting the estimation and evaluation period. The out-of-sample 
period for the Bitcoin returns is from 28 May 2019 to 3 February 2020 and for the Ethereum returns from 22 
April 2019 to 3 February 2020. In Table 10, the Kupiec p-values are presented for both positions. The 
highlighted values in Table 12 indicate that the null hypothesis of correct model specification should be 
rejected at the specified a-quantile level. It is observed that the null hypothesis was rejected for the GAS-
AST model fitted to the Bitcoin returns at all a-quantile levels. Thus, it seems that the GAS-AST model is not 
adequate and has low predictability power at these levels which is contrasting to the results of Troster et al. 
(2018), who found that the GAS-AST model produced the best out-of-sample forecasts. For the Bitcoin 
returns, the GAS-SSTD, GAS-ALD and GAS-GLD appear to have had adequate VaR models at all levels of 
the long and short positions considered, as none of the VaR models rejected the null hypothesis of model 
adequacy at these levels. At the 1% level, the GAS-SSTD had the highest p-value. The GAS-GLD 
outperformed the rest at the 2.5% and 97.5% levels. The GAS-ALD appears to have had the best 
performance at the 5% level of the long position and the 95% and 99% levels of the short position. For the 
Ethereum returns, at the 1% and 2.5% long positions, all the VaR models appear to be adequate as the 
models failed to reject the null hypothesis. The GAS-SSTD was the most robust models at these levels, as 
well as the 5% long position. It is observed that the GAS-AST and the GAS-ALD had similar p-value outputs 
for the long position and the 95% level of the short position. The GAS-GLD outperformed the rest of the 
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models considered at the 95% level. The GAS-SSTD outperformed the rest of the models at the 97.5% and 
99% levels. 
 
Table 10: Out-of-sample VaR backtesting for the Bitcoin and Ethereum returns 

   Long 
position 

   Short 
position 

 

 Distribution 1% 2.5% 5% 95% 97.5% 99% 
       
  
        
 GAS-SSTD 0.7680 0.5866 0.2738 0.6367 0.7813 0.7327 

Bitcoin GAS-AST < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
 GAS-ALD 0.2732 0.5866 0.9084 0.9084 0.5866 0.7680 
 GAS-GLD 0.2732 0.7813 0.6907 0.3446 0.9030 0.2732 
        

Ethereum GAS-SSTD 0.9247 0.9696 0.3651 0.0304 0.1998 0.5968 
GAS-AST 0.5968 0.3997 0.0304 0.0011 0.0038 0.0169 

 GAS-ALD 0.5968 0.3997 0.0304 0.0011 0.0787 0.2053 
 GAS-GLD 0.8197 0.8755 0.6027 0.1389 0.0641 0.0005 

b Bold values are the largest p-values. 
 

Conclusion 
 
Considering the growing interest in cryptocurrencies, it is of great significance to identify models that have 
the ability to forecast the risks associated with investment opportunities correctly. This study analysed and 
modelled the statistical characteristics exhibited by Bitcoin and Ethereum returns. GAS models with heavy-
tailed distributions were implemented to accommodate the features of these cryptocurrencies. The results of 
the show that the GAS model with heavy-tailed innovation distributions are, in fact, appropriate for modelling 
cryptocurrency returns, as the models tested here have the ability to encapsulate the properties that define 
them, with the GAS-ALD and GAS-GLD being the best for the Bitcoin returns, and the GAS-SSTD, GAS-
GLD and GAS-ALD models the best for the Ethereum returns. The GAS and GARCH models were also 
found to have adequate predictability power, with all models performing well except the GAS-AST model. 
With regard to the GAS-AST model, the findings of this study is in contrast to Troster et al., (2018) who found 
that this model presented the best out-of-sample forecast performance for the Bitcoin returns. Following April 
2018, it was observed that there was fluctuating decline in the close prices and the difference in the findings 
could thus be attributed to the fact that different time periods were used. Due to the increasing popularity, 
innovative characteristics, simplicity and transparency of cryptocurrencies, this information could be of 
interest to risk managers, investors, as well as academics (Katsiampa, 2017). 
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